Author:
Hofmann Johannes,Zwerger Wilhelm
Abstract
Abstract
We determine the hydrodynamic modes of the superfluid analog of a smectic-A liquid crystal phase, i.e., a state in which both gauge invariance and translational invariance along a single direction are spontaneously broken. Such a superfluid smectic provides an idealized description of the incommensurate supersolid state realized in Bose–Einstein condensates with strong dipolar interactions as well as of the stripe phase in Bose gases with spin–orbit coupling. We show that the presence of a finite normal fluid density in the ground state of these systems gives rise to a well-defined second-sound type mode even at zero temperature. It replaces the diffusive permeation mode of a normal smectic phase and is directly connected with the classic description of supersolids by Andreev and Lifshitz in terms of a propagating defect mode. An analytic expression is derived for the two sound velocities that appear in the longitudinal excitation spectrum. It only depends on the low-energy parameters associated with the two independent broken symmetries, which are the effective layer compression modulus and the superfluid fraction.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献