Frustration—no frustration crossover and phase transitions in 2D spin models with zig-zag structures

Author:

Sznajd Jozef

Abstract

Abstract Three 2D spin models made of frustrated zig-zag chains with competing interactions which, by exact summation with respect to some degrees of freedom, can be replaced by an effective temperature-dependent interaction, were considered. The first model, exactly solvable Ising chains coupled by only four-spin interactions, does not exhibit any finite temperature phase transition; nevertheless, temperature can trigger a frustration–no frustration crossover accompanied by gigantic specific heat. A similar effect was observed in several two-leg ladder models (Weiguo 2020 arXiv:2006.08921v2; 2020 2006.15087v1). The anisotropic Ising chains coupled by a direct interchain interaction and, competing with it, indirect interaction via spins located between chains, are analyzed using the exact Onsager’s equation and linear perturbation renormalization group (LPRG). Depending on the parameter set, such a model exhibits one antiferromagnetic (AF) or ferromagnetic (FM) phase transition or three phase transitions with a re-entrant disordered phase between AF and FM ones. The LPRG method was also used to study coupled uniaxial XXZ chains which, for example, can be a minimal model to describe the magnetic properties of compounds in which uranium and rare earth atoms form zig-zag chains. As with the Ising model, for a certain set of parameters, the model can undergo three phase transitions. However, both intrachain and interchain plain interactions s i , j x s k , l x + s i , j y s k , l y can eliminate the re-entrant disordered phase, and then only one transition takes place. Additionally, the XXZ model can undergo temperature-induced metamagnetic transition.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3