Author:
Politi Antonio,Politi Paolo,Iubini Stefano
Abstract
Abstract
The discrete nonlinear Schrödinger (DNLS) equation is a Hamiltonian model displaying an extremely slow relaxation process when discrete breathers appear in the system. In (Iubini et al 2019 Phys. Rev. Lett.
122 084102), it was conjectured that the frozen dynamics of tall breathers is due to the existence of an adiabatic invariant (AI). Here, we prove the conjecture in the simplified context of a unidirectional DNLS equation, where the breather is ‘forced’ by a background unaffected by the breather itself. We first clarify that the nonlinearity of the breather dynamics and the deterministic nature of the forcing term are both necessary ingredients for the existence of a frozen dynamics. We then derive perturbative expressions of the AI by implementing a canonical perturbation theory and via a more phenomenological approach based on the estimate of the energy flux. The resulting accurate identification of the AI allows revealing the presence and role of sudden jumps as the main breather destabilization mechanism, with an unexpected similarity with Lévy processes.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献