On dissipative symplectic integration with applications to gradient-based optimization

Author:

França Guilherme,Jordan Michael I,Vidal René

Abstract

Abstract Recently, continuous-time dynamical systems have proved useful in providing conceptual and quantitative insights into gradient-based optimization, widely used in modern machine learning and statistics. An important question that arises in this line of work is how to discretize the system in such a way that its stability and rates of convergence are preserved. In this paper we propose a geometric framework in which such discretizations can be realized systematically, enabling the derivation of ‘rate-matching’ algorithms without the need for a discrete convergence analysis. More specifically, we show that a generalization of symplectic integrators to non-conservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error. Moreover, such methods preserve a shadow Hamiltonian despite the absence of a conservation law, extending key results of symplectic integrators to non-conservative cases. Our arguments rely on a combination of backward error analysis with fundamental results from symplectic geometry. We stress that although the original motivation for this work was the application to optimization, where dissipative systems play a natural role, they are fully general and not only provide a differential geometric framework for dissipative Hamiltonian systems but also substantially extend the theory of structure-preserving integration.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference48 articles.

1. A variational perspective on accelerated methods in optimization

2. A nonsmooth dynamical systems perspective on accelerated extensions of ADMM;França,2018

3. ADMM and accelerated ADMM as continuous dynamical systems ICML;França,2018

4. Conformal symplectic and relativistic optimization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3