Impact of dephasing probes on incommensurate lattices

Author:

Ghosh Bishal,Mohanta Sandipan,Kulkarni Manas,Kumar Agarwalla Bijay

Abstract

Abstract We investigate open quantum dynamics for a one-dimensional incommensurate Aubry–André–Harper lattice chain, a part of which is initially filled with electrons and is further connected to dephasing probes at the filled lattice sites. This setup is akin to a step-initial configuration where the non-zero part of the step is subjected to dephasing. We investigate the quantum dynamics of local electron density, the scaling of the density front as a function of time both inside and outside of the initial step, and the growth of the total number of electrons outside the step. We analyze these quantities in all three regimes, namely, the de-localized, critical, and localized phases of the underlying lattice. Outside the initial step, we observe that the density front spreads according to the underlying nature of single-particle states of the lattice, for both the de-localized and critical phases. For the localized phase, the spread of the density front hints at a logarithmic behavior in time that has no parallel in the isolated case (i.e. in the absence of probes). Inside the initial step, due to the presence of the probes, the density front spreads in a diffusive manner for all the phases. This combination of rich and different dynamical behavior, outside and inside the initial step, results in the emergence of mixed dynamical phases. While the total occupation of electrons remains conserved, the value outside or inside the initial step turns out to have a rich dynamical behavior. Our work is widely adaptable and has interesting consequences when disordered/quasi-disordered systems are subjected to a thermodynamically large number of probes.

Publisher

IOP Publishing

Reference69 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3