The Buffon needle problem for Lévy distributed spacings and renewal theory

Author:

Godrèche Claude

Abstract

Abstract What is the probability that a needle dropped at random on a set of points scattered on a line segment does not fall on any of them? We compute the exact scaling expression of this hole probability when the spacings between the points are independent identically distributed random variables with a power-law distribution of index less than unity, implying that the average spacing diverges. The theoretical framework for such a setting is renewal theory, to which the present study brings a new contribution. The question posed here is also related to the study of some correlation functions of simple models of statistical physics.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference27 articles.

1. Some classical problems in random geometry;Calka,2019

2. Statistics of the occupation time of renewal processes;Godrèche;J. Stat. Phys.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3