Ultrametric fitting by gradient descent *

Author:

Chierchia Giovanni,Perret Benjamin

Abstract

Abstract We study the problem of fitting an ultrametric distance to a dissimilarity graph in the context of hierarchical cluster analysis. Standard hierarchical clustering methods are specified procedurally, rather than in terms of the cost function to be optimized. We aim to overcome this limitation by presenting a general optimization framework for ultrametric fitting. Our approach consists of modeling the latter as a constrained optimization problem over the continuous space of ultrametrics. So doing, we can leverage the simple, yet effective, idea of replacing the ultrametric constraint with a min–max operation injected directly into the cost function. The proposed reformulation leads to an unconstrained optimization problem that can be efficiently solved by gradient descent methods. The flexibility of our framework allows us to investigate several cost functions, following the classic paradigm of combining a data fidelity term with a regularization. While we provide no theoretical guarantee to find the global optimum, the numerical results obtained over a number of synthetic and real datasets demonstrate the good performance of our approach with respect to state-of-the-art agglomerative algorithms. This makes us believe that the proposed framework sheds new light on the way to design a new generation of hierarchical clustering methods. Our code is made publicly available at https://github.com/PerretB/ultrametric-fitting.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference54 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotation-invariant Hierarchical Segmentation on Poincaré Ball for 3D Point Cloud;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

2. Cross-modal Scalable Hyperbolic Hierarchical Clustering;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. MHCN: A Hyperbolic Neural Network Model for Multi-view Hierarchical Clustering;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. HyperAid;Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2022-08-14

5. Some Open Questions on Morphological Operators and Representations in the Deep Learning Era;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3