Entanglement asymmetry and quantum Mpemba effect in the XY spin chain

Author:

Murciano Sara,Ares Filiberto,Klich Israel,Calabrese Pasquale

Abstract

Abstract Entanglement asymmetry is a quantity recently introduced to measure how much a symmetry is broken in a part of an extended quantum system. It has been employed to analyze the non-equilibrium dynamics of a broken symmetry after a global quantum quench with a Hamiltonian that preserves it. In this work, we carry out a comprehensive analysis of the entanglement asymmetry at equilibrium taking the ground state of the XY spin chain, which breaks the U(1) particle number symmetry, and provide a physical interpretation of it in terms of superconducting Cooper pairs. We also consider quenches from this ground state to the XX spin chain, which preserves the U(1) symmetry. In this case, the entanglement asymmetry reveals that the more the symmetry is initially broken, the faster it may be restored in a subsystem, a surprising and counter-intuitive phenomenon that is a type of a quantum Mpemba effect. We obtain a quasi-particle picture for the entanglement asymmetry in terms of Cooper pairs, from which we derive the microscopic conditions to observe the quantum Mpemba effect in this system, giving further support to the criteria recently proposed for arbitrary integrable quantum systems. In addition, we find that the power law governing symmetry restoration depends discontinuously on whether the initial state is critical or not, leading to new forms of strong and weak Mpemba effects.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference78 articles.

1. Cool?;Mpemba;Phys. Educ.,1969

2. Experimental verifications of Mpemba-like behaviors of clathrate hydrates;Ahn;Korean J. Chem. Eng.,2016

3. Conformation directed Mpemba effect on polylactide crystallization;Hu;Cryst. Growth Des.,2018

4. Overtaking while approaching equilibrium;Chaddah,2010

5. Mpemba-like behavior in carbon nanotube resonators;Greaney;Metall. Mater. Trans. A,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3