Abstract
Abstract
Identifying the full entropy production of active particles is a challenging task. We introduce a microscopic, thermodynamically consistent model, which leads to active Ornstein–Uhlenbeck statistics in the continuum limit. Our minimal model consists of a particle with a fluctuating number of active reaction sites that contribute to its active self-propulsion on a lattice. The model also takes ordinary thermal noise into account. This approach allows us to identify the full entropy production stemming from both thermal diffusion and active driving. Extant methods based on the comparison of forward and time-reversed trajectory underestimate the physical entropy production when applied to the Langevin equations obtained from our model. Constructing microscopic Markovian models can thus provide a benchmark for determining the entropy production in non-Markovian active systems.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献