Dimensional crossover in driving-rate induced criticality on the hysteresis-loop of disordered ferromagnetic systems

Author:

Spasojević Djordje,Mijatović Svetislav,Janićević Sanja

Abstract

Abstract We study the effect of finite driving rate on the nonequilibrium hysteresis-loop criticality with the systems’ nonequilateral geometry constraints allowing the dimensional crossover from three-dimensional to two-dimensional disordered ferromagnetic systems . For each system’s thickness, the disorder is fixed above the critical line for adiabatic driving, such that the emergent critical behaviors are solely attributed to the increased driving rates of the external field.We demonstrate it by computing the pertaining magnetizations and coercive fields, changes in avalanche distributions and shapes, and correlation functions of spin-flip events where the pace of the field increments are varied in a broad range. Our results reveal that the driving field rate profoundly affects system evolution attaining three distinct regimes of the induced criticality at the proper thickness-dependent rate values. In particular, these regimes are characterized by the occurrence of non-spanning avalanches (slow driving), the first appearance of spanning avalanches (intermediate regime), and being overwhelmed by system-spanning avalanches (fast driving regime) for a given thickness. Our results will bring some critical insights to the theoretical and experimental studies on the field-driven nonequilateral systems both for conceptual reasons and the versatility of their applications..

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3