Author:
Godrèche Claude,Luck Jean-Marc
Abstract
AbstractWe revisit the statistics of extremes and records of symmetric random walks with stochastic resetting, extending earlier studies in several directions. We put forward a diffusive scaling regime (symmetric step length distribution with finite variance, weak resetting probability) where the maximum of the walk and the number of its records up to discrete timenbecome asymptotically proportional to each other for single typical trajectories. Their distributions obey scaling laws ruled by a common two-parameter scaling function, interpolating between a half-Gaussian and a Gumbel law. The exact solution of the problem for the symmetric exponential step length distribution and for the simple Polya lattice walk, as well as a heuristic analysis of other distributions, allow a quantitative study of several facets of the statistics of extremes and records beyond the diffusive scaling regime.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献