Cooperative freezing of the L12 ordered domains at the critical cooling temperature of Ni3Fe alloy

Author:

Mangla Anil,Deo Goutam,Apte Pankaj A

Abstract

Abstract It is well known that Ni3Fe transforms from a disordered solid solution to an ordered intermetallic with L12 superstructure when the alloy is cooled slowly. Here we elucidate the underlying cooperative phenomenon and the atomistic mechanism of this ordering process based on simulations using embedded atom potentials. As the simulated alloy is cooled from the disordered state to the critical cooling temperature (T c), Ni atoms with L12 order [denoted as Ni(L12 ⩾ 1) atoms] increase significantly along with Ni atoms having the least deviation from L12 local order (denoted as Ni([IP]3) atoms). The ordering (up to T c) occurs predominantly through random increase in Ni(L12 ⩾ 1) atoms throughout the system, as indicated by absence of long-range order. At T c, L12 ordered domains formed by Ni(L12 ⩾ 1) atoms ‘freeze’, i.e. these domains, collectively, achieve a threshold strength against thermal fluctuations. This is indicated by (i) dissipation of large-scale fluctuations of Ni(L12 ⩾ 1) atoms at T c and (ii) the growth of the L12 domains through propagation (at the expense of atoms with non-L12 local environment) as the alloy is cooled below T c. The stability threshold of the L12 ordered domains at T c is qualitatively consistent with (i) the critical slowing down, i.e. a significant increase in annealing time (to about 41 days) at 497 °C close to T c (∼500 °C) and (ii) sharp changes in bulk properties (due to loss of stability of the domains) when the alloy is heated across T c to about 550 °C. Further, the experimental long-range order parameter values as a function of reduced temperature are in reasonable agreement with the corresponding values of the simulated alloys. The contribution of Ni([IP]3) atoms to ordering in the actual alloy is potentially significant since such atoms together with nearest neighbours constitute about 75% of the total atoms in the simulated alloys at T c.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3