Equilibrium and non-equilibrium regimes in the learning of restricted Boltzmann machines*

Author:

Decelle Aurélien,Furtlehner Cyril,Seoane Beatriz

Abstract

Abstract Training restricted Boltzmann machines (RBMs) have been challenging for a long time due to the difficulty of precisely computing the log-likelihood gradient. Over the past few decades, many works have proposed more or less successful training recipes but without studying the crucial quantity of the problem: the mixing time, i.e. the number of Monte Carlo iterations needed to sample new configurations from a model. In this work, we show that this mixing time plays a crucial role in the dynamics and stability of the trained model, and that RBMs operate in two well-defined regimes, namely equilibrium and out-of-equilibrium, depending on the interplay between this mixing time of the model and the number of steps, k, used to approximate the gradient. We further show empirically that this mixing time increases with the learning, which often implies a transition from one regime to another as soon as k becomes smaller than this time. In particular, we show that using the popular k (persistent) contrastive divergence approaches, with k small, the dynamics of the learned model are extremely slow and often dominated by strong out-of-equilibrium effects. On the contrary, RBMs trained in equilibrium display faster dynamics, and a smooth convergence to dataset-like configurations during the sampling. Finally, we discuss how to exploit in practice both regimes depending on the task one aims to fulfill: (i) short k can be used to generate convincing samples in short learning times, (ii) large k (or increasingly large) is needed to learn the correct equilibrium distribution of the RBM. Finally, the existence of these two operational regimes seems to be a general property of energy based models trained via likelihood maximization.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference52 articles.

1. Information processing in dynamical systems: foundations of harmony theory;Smolensky,1986

2. Representational power of restricted Boltzmann machines and deep belief networks;Le Roux;Neural Comput.,2008

3. Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks;Hjelm;NeuroImage,2014

4. Latent source mining in FMRI via restricted Boltzmann machine;Hu;Hum. Brain. Mapp.,2018

5. Learning protein constitutive motifs from sequence data;Tubiana;Elife,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3