Abstract
Abstract
We review the spectral theory of soliton gases in integrable dispersive hydrodynamic systems. We first present a phenomenological approach based on the consideration of phase shifts in pairwise soliton collisions and leading to the kinetic equation for a non-equilibrium soliton gas. Then, a more detailed theory is presented in which soliton gas dynamics are modelled by a thermodynamic type limit of modulated finite-gap spectral solutions of the Korteweg–de Vries and the focusing nonlinear Schrödinger (NLS) equations. For the focusing NLS equation the notions of soliton condensate and breather gas are introduced that are related to the phenomena of spontaneous modulational instability and the rogue wave formation. The integrability properties of the kinetic equation for soliton gas are discussed and some physically relevant solutions are presented and compared with direct numerical simulations of dispersive hydrodynamic systems.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Reference148 articles.
1. Weak turbulence in media with a decay spectrum;Zakharov;J. Appl. Mech. Tech. Phys.,1965
2. Turbulence in integrable systems;Zakharov;Stud. Appl. Math.,2009
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献