Correlation of stochastic and ohmic power absorption with observed RF harmonics and plasma parameters in capacitively coupled discharges

Author:

Rawat Arti,Ganguli A,Narayanan RameshORCID,Tarey R D

Abstract

Abstract This work attempts to correlate the plasma density and RF harmonic profiles with respect to the pressure (at 13.56, 27.12 and 40.68 MHz) with the stochastic and ohmic power absorption mechanisms in a Capacitively Coupled Discharge (CCD), over a wide pressure range (0.6–1000 mTorr). Diagnostics include calibrated capacitive probe, compensated Langmuir Probe (LP) and uncompensated floating LP for measuring plasma parameters and RF signals. Pressure profiles of stochastic and ohmic powers, P Stoch and P Ohm (at 13.56 MHz) are obtained from their ratio (ξ) and the power absorbed by the electrons. Normalized profiles of an effective power (∼ P Stoch ρ × P Ohm 1 ρ ; ρ : pressure dependent parameter) are tuned to reproduce closely the normalized plasma density profiles from which relative contributions of stochastic/ohmic mechanisms are determined. It is shown that up to ≈30 mTorr, plasma production is stochastic while beyond that both methods contribute jointly. The RF harmonic profiles can be analysed similarly. Higher harmonics produced by the intrinsic nonlinearity of the stochastic process should appear most clearly in the plasma at low pressures where the latter operates alone. On the other hand, the fundamental RF voltage that is always present in the plasma, can also produce higher harmonics at the probe tip by driving the nonlinear probe sheath. Thus, the harmonics produced directly by the stochastic nonlinearity are inextricably mixed up with those arising due to the probe sheath. Significantly, one may conclude therefore that it is not possible to investigate the stochastic mechanism of power absorption by a study of its harmonics when the latter are measured using invasive probes.

Funder

Board of Research in Nuclear Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Reference29 articles.

1. Plasma etching: Yesterday, today, and tomorrow

2. Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017

3. Analysis and modelling of the impact of plasma RF harmonics in semiconductor plasma processing;Deewan,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3