Partial least squares modelling of spectroscopic data from microplasma emissions for determination of CO2 concentration

Author:

Klintberg LenaORCID,Åkerfeldt ErikaORCID,Persson AndersORCID

Abstract

Abstract The spectral emissions from a microplasma have been used to predict the CO2 concentration in gas samples covering a concentration range of 0%–100%. Different models based on partial least squares have been evaluated, comparing two different spectral pre-processing filters –multiplicative scatter correction (MSC) and standard normal variate correction (SNV) – and three different wavelength ranges. The models were compared with respect to accuracy, precision, stability and linearity. CO2 samples were mixed with either air or nitrogen. The choice of mixing gas influenced the predicted concentration and basing the models on data from only one mixing gas resulted in higher prediction power. Using air as mixing gas and SNV filtering resulted in a root mean square error of prediction (RMSEP) of 0.03 for an independent test dataset. This RMSEP was of the same range as the experimental error. On the other hand, the models with the best long term stability, reaching the lowest Allan variance, were based on observations with both mixing gases. Models based on MSC filtering generally had slightly higher RMSEP than those based on SNV filtering. Generally, the CO2 concentration could be accurately predicted in the concentration range of 5%–90%. For higher and lower concentrations, the models underestimated the CO2 concentration and were less accurate and precise. Basing the models on fewer wavelengths resulted in reduced linearity. The models were also evaluated by applying them for transcutaneous blood gas monitoring, where they helped to reveal new physiological information.

Funder

European Commission

Svenska Forskningsrådet Formas

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3