Development and optical characterization of an atmospheric pressure non-thermal plasma jet for superhydrophobic surface fabrication

Author:

Khanikar Rakesh RuchelORCID,Boruah Palash Jyoti,Bailung HORCID

Abstract

Abstract Atmospheric pressure non-thermal plasma jets are becoming subject of great attention in various fields such as plasma processing and biomedical applications due to their ability to produce highly reactive species and good reaction chemistry at low gas temperatures. In the present study, a non-thermal plasma jet operating on argon gas at atmospheric pressure aimed mainly towards surface modification and thin film deposition applications has been developed. Optical emission spectroscopy is used to evaluate the plasma parameters. The gas temperature (800 ± 50 K) is estimated from OH(A-X) rotational band. The excitation temperature is measured using intensity ratio of two argon lines and is found to be 0.241–0.273 eV and the corresponding electron temperatures have been measured. Electron density of the order of 1014 cm−3 has been obtained from the Stark broadening of Balmer H β line. The plasma jet has been successfully employed to deposit a superhydrophobic thin film of SiwCxHyOz using hexamethyldisiloxane (HMDSO) precursor monomer. The deposited film has been analyzed using XRD, FTIR, SEM, AFM, and contact angle analyzer. All the treated surfaces have shown superhydrophobic property with a contact angle greater than 150° showing numerous potential in various applications. This method is a relatively easy and environmental friendly way of fabricating superhydrophobic surfaces.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3