Hydride-based thermal energy storage

Author:

Adams Marcus,Buckley Craig EORCID,Busch Markus,Bunzel RobinORCID,Felderhoff Michael,Heo Tae WookORCID,Humphries Terry DORCID,Jensen Torben RORCID,Klug JulianORCID,Klug Karl H,Møller Kasper TORCID,Paskevicius MarkORCID,Peil Stefan,Peinecke Kateryna,Sheppard Drew AORCID,Stuart Alastair DORCID,Urbanczyk RobertORCID,Wang FeiORCID,Walker Gavin SORCID,Wood Brandon CORCID,Weiss DannyORCID,Grant David MORCID

Abstract

Abstract The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction mechanisms of both the forward and backward MH reaction is presented, where this model is extrapolated to a small pilot scale reactor, detailing how a TCES could function/operate in a real-world setting using a conventional shell & tube reactor approach. Further, the important parameter of effective thermal conductivity is explored using an innovative multi-scale model, to providing extensive and relevant experimental data useful for reactor and system design. Promising high temperature MH material configurations may be tuned by either destabilisation, such as using additions to Ca and Sr based hydrides, or by stabilisation, such as fluorine addition to NaH, MgH2, or NaMgH3. This versatile thermodynamic tuning is discussed, including the challenges in accurately measuring the material characteristics at elevated temperatures (500 –700 °C). Attention to scale up is explored, including generic design and prototype considerations, and an example of a novel pilot-scale pillow-plate reactor currently in development; where materials used are discussed, overall tank design scope and system integration.

Funder

Europäischer Fonds für regionale Entwicklung Leitmarktwettbewerb NRW (Nordrhein-Westfalen) EnergieUmweltwirtschaft

The Carlsberg Foundation for Reintegration Fellowship

Engineering and Physical Sciences Research Council (EPSRC), United Kingdom

Lawrence Livermore National Laboratory

U.S. Department of Energy by Lawrence Livermore National Laboratory

Australian Research Council Linkage Grant

Australian Research Council Discovery Grant

E.ON International Research Initiative under the topic area of Concentrating Solar Power

Department of Industry, Science, Energy and Resources for the 2019 Global Innovation Linkage

Publisher

IOP Publishing

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference102 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3