CO2 to solar fuel: design and reactivity of inorganic perovskites

Author:

Len Thomas,Chhabra Tripti,Rusanen Annu,Estrada-Pomares Jose,de Miguel Gustavo,Luque RafaelORCID

Abstract

Abstract Carbon dioxide release by human activity is the major cause of global warming. Decreasing the concentration of CO2 in the atmosphere is a challenge that needs to be addressed. In addition to their negative impact on the environment, the availability of petroleum-based fuel is decreasing. The photoconversion of CO2 into so-called green solar fuel is a possible alternative to reduce the quantity of carbon dioxide in the atmosphere aiming the limitation of greenhouse effect. Among the photocatalyst studied for these reactions, the perovskite-based appeared as one of the most promising class of materials. These materials possess unique optoelectronic properties and exhibit significant variability in terms of their dimensionality, structure, morphology, grain size, and tunable band gap, as well as the position of their valence band and conduction band. This review discusses both the classics and innovative perovskite synthesis methods such as solid-state reaction, hydrothermal and solvothermal synthesis, hot injection or chemical precipitation. Then, the use of these materials for the photoreduction of CO2 into fuel such as formic acid, methanol and methane is detailed.

Publisher

IOP Publishing

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3