Research prospects of graphene-based catalyst for seawater electrolysis

Author:

Li Xinyu,Liu Yingjie,Feng Yanhui,Tong Yunwei,Qin Zhenbo,Wu ZhongORCID,Deng Yida,Hu Wenbin

Abstract

Abstract Seawater has obvious resource reserve advantages compared to fresh water, and so the huge potential advantages for large-scale electrolysis of hydrogen production has been paid more attention to; but at the same time, electrolysis of seawater requires more stable and active catalysts to deal with seawater corrosion problems. Graphene-based materials are very suitable as composite supports for catalysts due to their high electrical conductivity, specific surface area, and porosity. Therefore, the review introduces the problems faced by seawater electrolysis for hydrogen production and the various catalysts performance. Among them, the advantages of catalysis of graphene-based catalysts and the methods of enhancement the catalytic performance of graphene are emphasized. Finally, the development direction of composite catalysts is prospected, hoping to provide guidance for the preparation of more efficient electrocatalysts for seawater electrolysis.

Funder

Yunnan Precious Metals Laboratory Science and Technology Project

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3