Bending performance of the CORC cable with flexible interlocked stainless steel former

Author:

Shi YangyangORCID,Ma TaoORCID,Dai Shaotao,Jin HuanORCID,Qin JinggangORCID

Abstract

Abstract The high temperature superconducting cable on round core (CORC) is a kind of cable that could be used in fusion projects. Nevertheless, conventional copper former CORC cables require a large external force to allow the cable to endure plastic deformation and be tightly wound into solenoids. In this case, the superconducting tape will be affected by concentrated stress, resulting in a risk of critical current degradation. Therefore, this paper proposes a new CORC cable with flexible interlocked stainless steel former, which can be wound into a solenoid by applying a small external force. To verify the bending performance of this interlocked former CORC cable, a double-layer and a ten-layer interlocked stainless steel former CORC cable, as well as a double-layer traditional copper former CORC cable, are fabricated. And these three CORC cables are used to wind solenoids of various radius sizes respectively. The experimental results show that the critical bending radius of the double-layer interlocked stainless steel former CORC cable is less than 20 mm, the critical bending radius of the ten-layer interlocked stainless steel former CORC cable is less than 50 mm, and the critical bending radius of the double-layer traditional copper former CORC cable is larger than 55 mm. A self-consistent finite element model for the critical current of the CORC cable solenoid is also established. And the critical current experimental results are in good agreement with the simulation results. The results of this paper verify the excellent bending performance of the interlocked former CORC cable, which provides a good option for the preparation of insert magnets for future fusion projects.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key Research and Development Program

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3