Prediction of nodal-line fermion and phonon-mediated superconductivity in bilayer α-borophene

Author:

Ge YanfengORCID,Wang Zhicui,Han Yifan,Shang Yue,Wan WenhuiORCID,Liu Yong

Abstract

Abstract The electron deficiency of boron allows the formation of a variety of monolayer or few-layer two-dimensional structures (borophenes) with interesting physical properties. Recent experiments have also confirmed that interlayer covalent bonding makes the bilayer structure more stable than the monolayer. In this work based on α-borophene, we propose three free-stranding bilayer structures with dynamic stability. In these three metallic structures, the electronic band crossings around Fermi level form nodal lines. All these structures also exhibit strong electron-phonon couplings. The Bardeen–Cooper–Schrieffer superconducting critical temperature T c of the type-II structure went as high as 28.2 K, which was further improved to 32.0 K by the enhancement effect of Li adatom at the Debye frequency. However, no increase in critical temperature was observed in other Li-doping cases. Specifically, Li intercalation inside the bilayer causes a significant abrupt decrease in the critical temperature of type-I structure. Our results indicated that the bilayer borophene would be an ideal platform for the coexistence of topological electronic states and superconducting states.

Funder

Natural Science Foundation of Hebei Province

Innovation Capability Improvement Project of Hebei

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3