Monodisperse BaZrO3 nanocrystals and flux pinning effect on upscaling MOD-derived (Y,Dy)Ba2Cu3O7− δ superconducting tapes

Author:

Huang RongtieORCID,Chen Jing,Liu Zhiyong,Dou Wenzhi,Zhang Ning,Cai Chuanbing

Abstract

Abstract In the present work, monodisperse BaZrO3 (BZO) nanocrystals with controllable sizes are successfully introduced into trifluoroacetate metal–organic deposition derived (Y,Dy)Ba2Cu3O7−δ ((Y,Dy)BCO)-coated superconducting tapes to act as effective pinning centers. The BZO nanocrystal addition strategy is extended to upscaling coated conductors as long as hundreds of meters, and as thick as 3.4 μm, of (Y,Dy)BCO layers. The corresponding superconducting performances of BZO-added (Y,Dy)BCO-coated conductors are systematically investigated under various applied magnetic fields and temperatures. It is revealed that the I c (77 K, self-field) of BZO-added tapes decreases linearly with BZO concentration, while the corresponding in-field lift-factors increase for all studied BZO additions. In-field J c values under various fields at low temperatures show that the (Y,Dy)BCO tape with 5%-BZO addition exhibits a better performance than that of other concentrations. Besides, this benefit of BZO addition appears identical for both thin and thick samples, as well as for tapes that are hundreds of meters long. The angular dependence of in-field I c also shows that significant improvement occurs in all the studied angular ranges after nanocrystal BZO additions, demonstrating that the nanocrystal addition strategy is of great value for upscaling commercial (Y,Dy)BCO tape for in-field applications.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Flux Pinning in MOD-REBCO Coated Conductors With Thick Superconducting Layer;IEEE Transactions on Applied Superconductivity;2024-05

2. Advances in artificial flux pinning of MOD-REBCO superconducting coated conductors;SCIENTIA SINICA Physica, Mechanica & Astronomica;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3