Maximum DC operating current degradation and magnetization loss of no-insulation (RE)Ba2Cu3O x coil under AC axial background magnetic fields

Author:

Xue WenboORCID,Fu Yutong,Lu ZhenORCID,Yang Qingqing,Li Ke,Zhao YueORCID,Wang YaweiORCID

Abstract

Abstract No-insulation (NI) high-temperature superconductor (HTS) coils show a great advantage on enhanced thermal stability during quenches. It is inevitably exposed to ripple AC magnetic fields in some applications, such as synchronous machines, tokamak magnets and maglev trains. The AC applied fields can induce an eddy current in NI coils due to the absence of turn-to-turn insulation. This eddy current may cause considerable maximum DC operating current degradation and additional magnetization loss in NI coils, which are still unclear. In this paper we study this issue using both experiments and simulations. An experimental platform is built to measure the maximum operating current of HTS coils exposed to AC axial applied fields, and the results show that the axial AC applied fields can lead to a significant maximum operating current degradation (22.9% in this study) on the NI HTS coil due to the eddy current induced even though the field is parallel to tape’s ab-plane and has a very low amplitude and frequency (26.88 mT/50 Hz). Meanwhile, this low applied field has little effect on the critical current of insulated HTS coils. A numerical model is applied to elucidate the underlying physical mechanism of this phenomenon, and the magnetization loss induced by an additional transport current is analyzed using this model. The influence of graded turn-to-turn resistivity technique is also investigated, and the results show that this technique can effectively prevent the maximum operating current degradation and reduce the magnetization loss of NI HTS coils exposed to AC axial applied fields.

Funder

Natural Science Foundation of Shanghai

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3