Electromagnetic characteristic analysis of a REBCO magnet with a current bypass/distribution winding technique under an asynchronous rotating magnetic field

Author:

Chae Yoon SeokORCID,Kim Ji HyungORCID,Quach Huu LuongORCID,Yoon Yong Soo,Kim Ho MinORCID

Abstract

Abstract Generally, high-temperature superconducting rotating machines (HTSRMs) are considered synchronous machines. If the output of the HTSRM fluctuates based on frequent changes in the electrical or mechanical loads, there is the concern that an asynchronous rotating magnetic field (RMF) is applied from the stationary copper armature winding to the high-temperature superconducting (HTS) field winding in the rotary. This may act as a magnetic disturbance to the HTS field magnet, resulting in permanent damage. To enhance the reliability of HTS magnets in wind power and electric propulsion applications, winding methods with current bypass/distribution characteristics, such as no-insulation (NI) and metal-insulation (MI), have attracted scholarly attention because of their high thermal and electrical stabilities, resulting in their self-stabilizing and protective performances. To verify the feasibility of the NI and MI winding techniques for wind power generators, the basic characteristics under a time-varying magnetic field must be studied, contrary to HTS magnet applications under a time-static magnetic field. Therefore, the electromagnetic characteristics of rare-earth barium copper oxide (REBCO) magnets applied with NI and MI winding technologies were compared and analyzed in this study, considering the magnetically transient situations in which an asynchronous RMF is applied to REBCO magnets. In addition, we developed a characteristic evaluation device similar to a synchronous rotating machine to generate the unsynchronized RMF. Moreover, various basic tests were performed to target the small racetrack-type field windings. The critical current, n-value, terminal voltage, and center magnetic field are investigated under various values of the frequency and current amplitude of the three-phase armature winding, and their behaviors are discussed in detail based on the characteristic resistances of the two test magnets.

Funder

National Research Foundation of Korea

Korea government

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3