Abstract
Abstract
Two different types of monoclinic HfO2 nanocrystals were employed in this work to study the effect of nanocrystal shape and crystallinity on the structural defects in the YBa2Cu3O7−δ (YBCO) matrix as it leads to an enhancement of pinning performances of solution-derived YBCO nanocomposite films. In this work the nanorod-like HfO2 nanocrystals obtained from surfactant-controlled synthesis led to short intergrowths surrounding the particles, while spherical HfO2 nanocrystals from the solvent-controlled synthesis led to the formation of long stacking faults in the YBCO matrix. It means that the small difference in crystallinity, lattice parameters, nanocrystal structures, core diameter of preformed nanocrystals in colloidal solutions have a strong influence on the formation of the structural defects around the particles in the YBCO matrix, leading to different pinning performances.
Funder
National Science Foundation
FWO
European Union
Brookhaven National Laboratory
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献