High critical current solution derived YBa2Cu3O7 films grown on sapphire

Author:

Pop C,Barusco P,Vlad R,Queralto A,Gupta K,Almog B,Saraf A,Deutscher G,Granados X,Puig T,Obradors XORCID

Abstract

Abstract Superconducting fault current limiters (SFCLs) are very attractive devices which require to increase its robustness against the destructive hot spots. The use of sapphire substrates to grow YBa2Cu3O7 (YBCO) films is a very attractive approach due to its high thermal conductivity. This article reports the growth of microcrack-free, epitaxial YBCO layers by chemical solution deposition (CSD) on Ce1−x Zr x O2 (CZO)/yttrium-stabilized zirconia/r-cut barely polished sapphire (BPS) substrates which can be produced in long lengths at low cost. The surface quality of the r-cut sapphire and its role on the epitaxy of CZO and YBCO layers is discussed. The issue of the microcrack generation in YBCO layers is investigated in relation to the film thickness, the growth process and the oxygenation annealing step. We demonstrate that microcracks formation is related to the in-plane tensile stress generated during the oxygenation step instead of the differential thermal expansion effects and thus it can be minimized through an adapted oxygenation process. We have shown that CSD growth of YBCO films with thicknesses up to 400 nm and attractive superconducting properties (J C ∼ 1.9 MA cm−2 at 77 K) can be achieved on BPS substrates which can be used at moderate cost for SFCL devices.

Funder

Spanish Ministry of Economy and Competitiveness

SUMATE

FASTGRID

COST

Generalitat de Catalunya

European Regional Development Fund

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3