Experimental study of stability, quench propagation and detection methods on 15 kA sub-scale HTS fusion conductors in SULTAN

Author:

Bykovskiy NORCID,Bajas H,Dicuonzo O,Bruzzone P,Sedlak KORCID

Abstract

Abstract High-temperature superconductors (HTSs) enable exclusive operating conditions for fusion magnets, boosting their performance up to 20 T generated magnetic fields in the temperature range from 4 K to 20 K. One of the main technological issues of HTS conductors is focused on their protection in the case of thermal runaway (quench). In spite of the extremely high thermal stability of HTS materials, quenching is still possible due to local defects along the conductor length or insufficient cooling. In such cases, the high stability results in the slow propagation of a resistive zone. Thereby, a risky hot-spot temperature (>200 K) can be reached if applying conventional quench detection methods at a voltage threshold of 0.1–0.5 V, typical for fusion magnets. Aiming at an experimental study of the phenomenon, a series of sub-scale 15 kA 3.6 m long conductors based on stacks of tapes soldered in copper profiles are manufactured at the Swiss Plasma Center, including twisted rare earth barium copper oxide (ReBCO) and bismuth strontium calcium copper oxide (BISCCO) triplets, non-twisted and solder-filled ReBCO triplets, as well as indirectly cooled non-twisted ReBCO single strands. Applying either an increasing helium inlet temperature, overcurrent operation or energy deposited by embedded cartridge heaters, critical values of the electric field and temperature are evaluated for a given operating current (up to 15 kA) and background magnetic field (up to 10.9 T). Once quenching is actually triggered, the quench propagation is studied using distributed voltage taps and temperature sensors able to monitor the external temperature of the jacket and the internal temperature of the conductor (helium or copper). Thanks to the recent upgrade of the Supraleiter Test Anlage (SULTAN) test facility, quench propagation in the conductors is measured up to a total voltage of 2 V and a peak temperature of 320 K. Furthermore, advanced quench detection methods based on superconducting insulated wires and fiber optics are also instrumented and studied. A summary of the test samples, their instrumentation and corresponding test results are presented in this work.

Funder

Euratom Research and Training Programme

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3