Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem

Author:

Herbst MORCID,Fleischmann AORCID,Hengstler D,Mazibrada D,Münch LORCID,Reifenberger AORCID,Ständer C,Enss C

Abstract

Abstract The performance of superconducting devices like qubits, superconducting quantum interference devices (SQUIDs), and particle detectors is often limited by finite coherence times and 1 / f noise. Various types of slow fluctuators in the Josephson junctions and the passive parts of these superconducting circuits can be the cause, and devices usually suffer from a combination of different noise sources, which are hard to disentangle and therefore hard to eliminate. One contribution is magnetic 1 / f noise caused by fluctuating magnetic moments of magnetic impurities or dangling bonds in superconducting inductances, surface oxides, insulating oxide layers, and adsorbates. In an effort to further analyze such sources of noise, we have developed an experimental set-up to measure both the complex impedance of superconducting microstructures, and the overall noise picked up by these structures. This allows for important sanity checks by connecting both quantities via the fluctuation-dissipation theorem. Since these two measurements are sensitive to different types of noise, we are able to identify and quantify individual noise sources. Furthermore, our measurements are not limited by the quantum noise limit of front-end SQUIDs, allowing us to measure noise caused by just a few ppm of impurities in close-by materials. We present measurements of the insulating SiO 2 layers of our devices, and magnetically doped noble metal layers in the vicinity of the pickup coils at T = 40 mK 800 mK and f = 1 Hz 100 kHz .

Funder

Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3