Abstract
Abstract
Fully superconducting rotating machines employing REBa2Cu3O
y
(REBCO, RE = rare earth elements or Y) superconducting armature and field coils, are particularly interesting for aircraft applications, owing to their high output power density (kW kg−1). To achieve high current capability in superconducting coils, we have proposed a cabling design for transposed multi-strand parallel conductors. In the parallel conductor design, the REBCO strands are insulated from each other, except for both terminal ends, and transposed during the winding process to achieve uniform current distribution by cancellation of interlinkage magnetic flux between the strands. In this study, a simplified analytical method considering inductances was developed based on Laplace’s equation in cylindrical coordinates to roughly calculate the current distributions of multi-strands under armature coil conditions. The validity of the analytical method was investigated through current distribution measurements of the sample coils wound with two-strand parallel conductors. Consequently, the analytical method was validated with approximately 10% deviation under the experimental coil conditions. To establish a more accurate analysis method, certain improvements are needed.
Funder
Japan Society for the Promotion of Science
New Energy and Industrial Technology Development Organization
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献