Abstract
Abstract
Magneto-optical imaging was employed to study dendritic flux avalanches in metal/superconductor and superconductor/superconductor hybrid structures over an extended range of magnetic field ramping rates. Our results in Cu/NbN show that the previously reported suppression of dendritic flux avalanches in metal coated superconducting films is limited to low ramping rates; as the ramping rate increases, the metal coating becomes less and less effective. A more complex behavior is exhibited in superconductor/superconductor hybrid structures. Our measurement in NbN partially coated with Nb, reveal three distinctive types of dendritic avalanches: those propagating in only one layer, either as regular dendrites in the uncoated NbN or as surface dendrites in the Nb layer, and hybrid dendrites that propagate in both the Nb and NbN layers simultaneously. These three types of dendrites are distinguished by their morphology, temperature dependence and instability threshold field. The overall stability of the hybrid structure significantly exceeds that of its weak component.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites