Abstract
Abstract
In this work, we develop and study superconducting materials for a broadband microwave single-photon detector for wide-range applications in superconducting quantum devices. Ideal materials of this type should have a superconducting gap of the order of 10 GHz (0.2 K), and possess a normal sheet resistance of the order of 50
Ω
. We find that Ti/Pt bilayers are good candidates: it enables to vary the superconducting transition temperature in a wide range, from 0.1 to 0.4 K, and the sheet resistance in the range from 10 to 50
Ω
. We present a proof-of-principle demonstration of a low-level microwave power detector based on a nanobridge made of a designed Ti/Pt bilayer. The response to the absorbed microwave power is consistent with the picture of the kinetic inductance detection in superconductors. The extracted response time corresponds to the recombination of quasiparticles with the emission of a photon to the microwave line.
Funder
Russian Science Foundation
Institute of Microelectronics Technology and High Purity Materials
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献