Abstract
Abstract
Different electromagnetic formulations were proposed and implemented in finite element (FE) software to model high-temperature superconductors-coated conductors (HTS-CCs) and HTS tape topologies. However, their modelling can be notably demanding in computational resources, particularly computation time. Mixed formulations such as
H
−
ϕ
, T − A, and
T
−
ϕ
were proposed and used, proving to be considerably faster than conventional ones, although these formulations present different performances and characteristics depending on the modelled conditions and geometry. This paper reviews the electromagnetic formulations proposed in the literature for FE simulation of HTS-coated conductors and HTS tape topologies. Implementation aspects, which are lacking in the literature, are presented, especially for T − A and
T
−
ϕ
formulations developed for most relevant tape topologies, for example, HTS CC stacked (CCS) tape and HTS twisted tapes. Simulation results are analysed, alongside the consequent conclusions regarding the accuracy, as well as advantages and limitations of each formulation, all made taking into account each tape geometry and its operating conditions. Their implementation review will be straightforward in the case of
H
−
formulation and
A
−
formulation. In advance, the T − A formulation is shown to be the most efficient FE formulation for HTS-CC topologies, being, among the studied, the most efficient computational resource. Moreover, its inherent approximation of the HTS tape as a thin sheet has delivered accurate results, specifically regarding current density distributions in the HTS layer and AC losses when compared with the
H
−
formulation. Correspondingly, FE multiphysics simulations are shown for three HTS-CC topologies: a single HTS tape, an HTS CCS tape, and an HTS twisted-stacked tape cable.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献