In-situ synchrotron x-ray photoelectron spectroscopy study of medium-temperature baking of niobium for SRF application

Author:

Prudnikava AORCID,Tamashevich YORCID,Makarova A,Smirnov D,Knobloch J

Abstract

Abstract In order to determine optimal parameters of vacuum thermal processing of superconducting radiofrequency niobium cavities exhaustive information on the initial chemical state of niobium and its modification upon a vacuum heat treatment is required. In the present work the chemical composition of the niobium surface upon ultra-high vacuum baking at 200 C–400 C similar to ‘medium-temperature baking’ and ‘furnace baking’ of cavities is explored in-situ by synchrotron x-ray photoelectron spectroscopy (XPS). Our findings imply that below the critical thickness of the Nb 2 O 5 layer ( 1 nm ) niobium starts to interact actively with surface impurities, such as carbon and phosphorus. By studying the kinetics of the native oxide reduction, the activation energy and the rate-constant relation have been determined and used for the calculation of the oxygen-concentration depth profiles. It has been established that the controlled diffusion of oxygen is realized at temperatures 200 C–300 C, and the native-oxide layer represents an oxygen source, while at 400 C the pentoxide is completely reduced and the doping level is determined by an ambient oxygen partial pressure. Fluorine (F to Nb atomic ratio is 0.2) after the buffered chemical polishing was found to be incorporated into the surface layer probed by XPS ( 4.6 nm ), and its concentration increased during the low-temperature baking (F/Nb = 0.35 at 230 C) and depleted at higher temperatures (F/Nb = 0.11 at 400 C). Thus, the influence of fluorine on the performance of mid-T baked, nitrogen-doped and particularly mild-baked (120 C/48 h) cavities must be considered. The possible role of fluorine in the educed Nb + 5 Nb + 4 reaction under the impact of an x-ray beam at room temperature and during the thermal treatment is also discussed. The range of temperature and duration parameters of the thermal treatment at which the niobium surface would not be contaminated with impurities is determined.

Publisher

IOP Publishing

Reference90 articles.

1. Cavity baking: a cure for the high accelerator field q0 drop;Visentin,1999

2. Surface superconductivity in niobium for superconducting rf cavities;Casalbuoni;Nucl. Instrum. Methods Phys. Res. A,2005

3. The role of near-surface dislocations in the high magnetic field performance of superconducting niobium cavities;Romanenko;Supercond. Sci. Technol.,2010

4. Involvement of hydrogen-vacancy complexes in the baking effect of niobium cavities;Visentin;Phys. Rev. Spec. Top. Accel. Beams,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3