Modelling the mechanics of 32 T REBCO superconductor magnet using numerical simulation

Author:

Srivastava Arpit KumarORCID,Pardo EnricORCID

Abstract

Abstract High-temperature REBCO superconducting tapes are very promising for high-field magnets. With high magnetic field applications there are high electromechanical forces, and thus a concern for mechanical damage. Due to the presence of large screening currents and the composite structure of the tape, the mechanical design of these magnets is not straightforward. In addition, many contemporary designs use insulated winding. In this work, we develop a novel two-dimensional axi-symmetric finite element tool programmed in MATLAB that assumes the displacement field to be within a linear elastic range. The stack of pancakes and the large number of REBCO tape turns are approximated as an anisotropic bulk hollow cylinder. Our results agree with uni-axial stress experiments in the literature, validating the bulk approximation. Here, we study the following configuration. The current is first ramped up to below the critical current and we calculate the screening currents and the forces that they cause using the minimum electromagnetic entropy production method (MEMEP) model. This electromagnetic model can now take insulated magnets into account. As a case study, a 32 T REBCO superconductor magnet is simulated numerically. We perform a complete mechanical analysis of the magnet by including the axial and shear mechanical quantities for each pancake, unlike in previous work where only radial and circumferential quantities were focused on. The effect on mechanical quantities without the screening current is also calculated and compared. It is shown that including the screening current-induced field strongly affects the mechanical quantities, especially the shear stress. The latter may be a critical quantity for certain magnet configurations. Additionally, in order to overcome high stresses, a stiff overbanding of different materials is considered and numerically modelled, which significantly reduces the mechanical stresses. The finite element-based model developed is efficient in calculating the mechanical behaviour of any general superconductor magnet and its devices.

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Horizon 2020 Framework Programme

Agentúra na Podporu Výskumu a Vývoja

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3