Multi-scale nonlinear stress analysis of Nb3Sn superconducting accelerator magnets

Author:

Sun Eric QiuliORCID

Abstract

Abstract A multi-scale nonlinear procedure to analyze the stress in Nb3Sn superconducting accelerator magnets is presented to address one of the most challenging obstacles currently facing the successful development of high-field superconducting magnets—the issue of stress management. The study demonstrates that gasket materials (special nonlinear materials) are capable of modeling the complex nonlinear deformation behavior of insulation layers within the Nb3Sn coil block and that Hill materials (orthotropic materials utilizing the Hill yield criterion) are suitable to enable homogenization of the filamentary regions and the resin-impregnated Nb3Sn Rutherford cables. With the whole magnet under preload, cool-down, and Lorentz forces, the nonlinear behavior of the Nb3Sn coil was simulated, in three orthongonal axes, using the combined properties of the gasket materials (insulation layers) and Hill materials (resin-impreganted cable). The procedure makes very few assumptions with regard to material properties because it incorporates actual measured stress–strain curves in the analysis. The coil was simulated to the level of detail of the insulation layers and resin-impregnated cables. The computed compressive azimuthal stresses of the cables were used to assess stress-induced performance degradation. Through submodeling, the area-weighted average axial strains of the strands were computed and employed to evaluate the strain-induced performance degradation. The overall performance degradation of the Nb3Sn coil was thus obtained, and this information was subsequently used to guide the design of the overall magnet. Besides Nb3Sn magnets, this versatile procedure can also be employed in the design of LTS, HTS, and room temperature magnets or of any structures ultilizing composite materials; specifically, it can be used to manage the stress and strain of HTS fusion magnets.

Funder

Department of Energy of USA

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Reference83 articles.

1. HE-LHC: the high-energy large hadron collider, future circular collider conceptual design report volume 4;Abada;Eur. Phys. J. Spec. Top.,2019

2. Designing magnets for the world’s largest particle collider;Hampson,2019

3. The LHC main dipoles and quadrupoles toward series production;Rossi;IEEE Trans. Appl. Supercond.,2003

4. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges;Parizh;Supercond. Sci. Technol.,2016

5. Development and first test of the 15 T Nb3Sn dipole demonstrator MDPCT1;Zlobin;IEEE Trans. Appl. Supercond.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3