Numerical investigation of current distributions around defects in high temperature superconducting CORC® cables

Author:

Teyber ReedORCID,Marchevsky MaximORCID,Martinez Aurora Cecilia Araujo,Prestemon Soren,Weiss Jeremy,van der Laan DankoORCID

Abstract

Abstract High performance ReBCO magnet prototypes are typically monitored and protected with voltage measurements, however a variance in safe operating limits has been observed. A potential issue arises from current redistribution phenomena associated with unidentified defects in cables composed of ReBCO tapes. In this work, a network model is developed to simulate current and voltage distributions around defects in CORC® cables. The evolving network of conductor overlap is evaluated. Trends in CORC® operation at 77 K are presented, and it is shown that power dissipation in an I–V curve depends strongly on a third dimension of defect magnitude. The predictive tool is then coupled with a differential evolution algorithm to recommend optimal CORC® layering topologies based on reel-to-reel tape measurements. The developed model facilitates understanding of CORC® cable phenomena, and the results suggest high temperature superconducting magnet protection can be improved with cable and defect characterization efforts.

Funder

US Department of Energy, Office of Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3