Abstract
Abstract
When exposed to time-dependent magnetic fields, REBCO Roebel cables generate AC loss resulting from both magnetic hysteresis and induced inter-strand coupling currents. Until now, the AC loss has been computed in a two-dimensional approximation assuming fully coupled or decoupled strands, and a finite inter-strand resistance could be simulated only with three-dimensional models. In this work, we propose a homogenization procedure that reduces the three-dimensional geometry of the Roebel cable to two dimensions, without ignoring connections between the strands. The homogenized cable consists of two parallel ‘monoblocks’ with an anisotropic resistivity. The proposed model enables computation of AC coupling loss without the need for complex three-dimensional simulations. For experimental validation, a Roebel cable with soldered strands was prepared. The inter-strand resistance was determined by applying a transverse current and measuring the voltage profile. Additionally, the AC magnetization loss of the cable was measured in fields of 1 to 50 mT with frequencies of 1 to 2048 Hz using a calibration-free technique. With the measured inter-strand resistance as input parameter, the monoblock model gives a good estimate for the AC loss, even for conditions in which the coupling loss is dominant.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献