Abstract
Abstract
Nb3Sn is a promising advanced material under development for superconducting radiofrequency cavities. Past efforts have been focused primarily on small development-scale cavities, but large, often multi-celled cavities, are needed for particle accelerator applications. In this work, we report on successful Nb3Sn coatings on Nb in a 1 m-long 9-cell Nb sample-host cavity at Fermilab. The geometry of the first coating with only one Sn source made it possible to study the influence of Sn flux on the microstructure. Based on these results, we postulate a connection between recently observed anomalously large thin grains and uncovered niobium spots observed in the past by other authors (Trenikhina et al 2018 Supercond. Sci. Technol.
32 015004). A phenomenological model to explain how these anomalously large grains could form is proposed. This model is invoked to provide possible explanations for literature results from several groups and to guide key process parameters to achieve uniform vapor-diffusion coatings, when applied to complex structures as the multi-cell cavity under study.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献