Stability of DC transport in HTS conductor with local critical current reduction

Author:

Gömöry FedorORCID,Šouc JánORCID

Abstract

Abstract A common feature of commercially available conductors based on high-temperature superconducting compounds is the fluctuation of critical current along the length. Fortunately, the practice adopted by manufacturers nowadays is to supply the detailed I c(x) data with the conductor. Compared to knowing just the average of critical current, this should also allow a much better prediction of the conductor performance. Statistical methods are suitable for this purpose in the case when the fluctuations are regular at the low end of critical current distribution. However, a different approach is necessary at the presence of ‘weak spots’ that drop out of any statistics. Because of the strong nonlinearity of the current–voltage curve, such a location could transform into a ‘hot spot’ at transporting direct current (DC), with an abrupt increase of temperature endangering the conductor operation. We present a set of analytical formulas including the prediction of the maximum DC that could be carried sustainably before the thermal runaway appears. It is necessary to know the cooling conditions as well as the properties of the conductor constituents and their architecture. A formula for the voltage appearing on a weak spot, and its dependence on the DC, is also proposed. For this purpose the result of previous theoretical work has been slightly modified after comparing it with numerical iterative computations and finite element modeling. We demonstrate that the derived model allows a powerful analysis of experimental data comprising an estimation of the weak spot parameters i.e. its critical current and the length of the defect zone.

Funder

Agentúra na Podporu Výskumu a Vývoja

European Commission

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3