Abstract
Abstract
YBa2Cu3O7-based coated conductors (CCs) achieve the highest critical current densities (J
c) of any known superconductor and are a key technology for applications such as rotatory machines, high-field magnets and power transmission. Incorporation of nano-sized non-superconducting second phases as additional vortex pinning centers has been considered the most amenable route to further enhance J
c at an industrial scale, and has been successfully used in commercial CCs. The resulting pinning landscape is quite complex, with both synergistic and competing interactions among the various types of defects. Particle irradiation, on the other hand, allows for a controlled post-processing incorporation of a well-defined defect morphology. We have previously shown that irradiation with protons and other light ions can further enhance the in-field J
c in commercial state-of-the-art CCs. Here we develop a combined irradiation process that increases J
c above values previously achieved by irradiating with only one species. Our new approach involves sequentially irradiating with 250 MeV Au ions and 4 MeV protons. For example, at T∼ 27 K (liquid neon) and µ
0
H∼ 4 T, a region of interest for rotatory machines applications, we obtain J
c ∼ 5 MA cm−2, which is about 40% higher than the values produced by the individual irradiations. Finally, we conclude that this is due to the synergistic pinning effects of the introduced splayed, non-uniform columnar defects and small clusters.
Funder
National Science Foundation
Basic Energy Sciences
Office of Science
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献