Review of the temporal stability of the magnetic field for ultra-high field superconducting magnets with a particular focus on superconducting joints between HTS conductors

Author:

Takeda YORCID,Maeda H,Ohki K,Yanagisawa YORCID

Abstract

Abstract Superconducting magnets used in applications such as magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) require significant temporal magnetic field stability, which can be achieved when the MRI and NMR magnets are operated in the persistent current mode (persistent-mode) using superconducting joints. However, the ultra-high field MRI and NMR magnets are sometimes operated in the driven mode. Herein, we present an analysis of the temporal magnetic field drift and fluctuations observed for MRI and NMR magnets operating in the driven mode and an exploration of effective methods for stabilizing the temporal magnetic field fluctuations. In the last decade, substantial improvements have been achieved in superconducting joints between high-temperature superconductors (HTSs). These superconducting joints enable the development of persistent-mode ultra-high field magnets using HTS coils. Therefore, we herein review the superconducting joint technology for HTS conductors and describe the results of the persistent-mode operation achieved by a medium-field NMR magnet using an HTS coil. Particularly, the cutting-edge progress achieved concerning HTS superconducting joints, including joining methods, superconducting properties, and future prospects, is highlighted along with the issues that need to be addressed.

Funder

Japan Science and Technology Agency

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3