Artificial intelligence-based models for reconstructing the critical current and index-value surfaces of HTS tapes

Author:

Russo GiacomoORCID,Yazdani-Asrami MohammadORCID,Scheda RiccardoORCID,Morandi AntonioORCID,Diciotti StefanoORCID

Abstract

Abstract For modelling superconductors, interpolation and analytical formulas are commonly used to consider the relationship between the critical current density and other electromagnetic and physical quantities. However, look-up tables are not available in all modelling and coding environments, and interpolation methods must be manually implemented. Moreover, analytical formulas only approximate real physics of superconductors and, in many cases, lack a high level of accuracy. In this paper, we propose a new approach for addressing this problem involving artificial intelligence (AI) techniques for reconstructing the critical surface of high temperature superconducting (HTS) tapes and predicting their index value known as n-value. Different AI models were proposed and implemented, relying on a public experimental database for electromagnetic specifications of HTS tapes, including artificial neural networks (ANN), eXtreme Gradient Boosting (XGBoost), and kernel ridge regressor (KRR). The ANN model was the most accurate in predicting the critical current of HTS materials, performing goodness of fit very close to 1 and extremely low root mean squared error. The XGBoost model proved to be the fastest method, with training computational times under 1 s; whilst KRR could be used as an alternative solution with intermediate performance.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3