Abstract
Abstract
For modelling superconductors, interpolation and analytical formulas are commonly used to consider the relationship between the critical current density and other electromagnetic and physical quantities. However, look-up tables are not available in all modelling and coding environments, and interpolation methods must be manually implemented. Moreover, analytical formulas only approximate real physics of superconductors and, in many cases, lack a high level of accuracy. In this paper, we propose a new approach for addressing this problem involving artificial intelligence (AI) techniques for reconstructing the critical surface of high temperature superconducting (HTS) tapes and predicting their index value known as n-value. Different AI models were proposed and implemented, relying on a public experimental database for electromagnetic specifications of HTS tapes, including artificial neural networks (ANN), eXtreme Gradient Boosting (XGBoost), and kernel ridge regressor (KRR). The ANN model was the most accurate in predicting the critical current of HTS materials, performing goodness of fit very close to 1 and extremely low root mean squared error. The XGBoost model proved to be the fastest method, with training computational times under 1 s; whilst KRR could be used as an alternative solution with intermediate performance.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献