Low-resistance joints for YBCO-coated conductors with Ag nanoparticle paste

Author:

Wang WentaoORCID,Wang Ming,Han Leilei,Chen Yu,Liu Lian,Yang Fan,Li MingyuORCID,Yu ZhouORCID,Zhao YongORCID

Abstract

Abstract Due to the limited available piece length of YBCO-coated conductors (i.e. tapes or wires) and the different requirements for magnetic field, joints are inevitable for manufacturing high-temperature superconducting magnets. In this study, a sintering nano-silver (Ag) process was developed and used to connect YBCO tapes stabilized by anAg layer with low-temperature and short-time sintering of Ag nanoparticle (NP) paste. The thermodynamic characteristics of Ag NP paste were explored using a TG/DSC setup. The effects of sintering temperature, mechanical pressure and lapped length on microstructures and electrical properties of joints were comprehensively investigated. It is found that the pre-volatilization of low-boiling-point solvent in the paste is beneficial to improve the densification of sintered structure, thus contributing to increasing the critical current I c of the joint. With increasing sintering temperature, the I c of the joint will be close to that of the virgin tape, and the joint resistance experiences small fluctuations, but joint connectivity is enhanced. As the temperature reaches 205 °C, I c decreases to 84% of the virgin tape, and joint resistance increases obviously. In addition, the axial tension strength at room temperature is improved with the increase in mechanical pressure, while the resistance does not demonstrate distinct variation. Considering the electromechanical properties, the optimal joining process is determined as sintering at 180 °C and 30 MPa for 10 min. The joint with this technology possesses a closely connected interface and a well-sintered nano-Ag microstructure with pores. By further extending the lapped length, a YBCO joint resistivity as low as ∼10.56 nΩ cm2 is obtained, which is around a quarter of that of the soldering joint, and the process is much easier than that of the Ag diffusion joint.

Funder

Science and Technology Project

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Financial support of the National Key Research and Development Plan of China

Analysis and Testing Center of Southwest Jiaotong University

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3