Noise analysis and optical response of microwave kinetic inductance detectors with an optical stack

Author:

Nicaise PaulORCID,Hu JieORCID,Chaumont Christine,Bonifacio Piercarlo,Piat Michel,Geoffray Hervé,Boussaha FaouziORCID

Abstract

Abstract We report on the experimental investigation of optical coupling for superconducting microresonators known as microwave kinetic inductance detectors (MKIDs) in the visible and near-infrared bands. MKIDs are photon-counting, time and energy-resolving detectors that still suffer from a poor quantum efficiency. To improve this efficiency, we propose to add a superconducting reflective layer below the absorbing part of the detector separated by a transparent Al2O3 layer with a quarter-wavelength thickness optimized around a single wavelength λ = 405 nm. We have first fabricated samples patterned from stoichiometric TiN ( T c 4 K), one with the full optical stack, one without for reference and one with a partial optical stack in order to characterize the noise influence of each layer individually. We observe that the full optical stack geometry has the most impact on the resonator’s noise and quality factors. A second design was fabricated to characterize the optical response to short pulses of the optical stack and we show from both the frequential noise and optical response that a strong signature of TLS is still present in the optical stack sample. We have finally obtained single-photon response with the optical stack using a more sensitive tri-layer TiN/Ti/TiN absorber ( T c 1.3 K) for which a maximum energy resolving power of R = E / Δ E 1.3 was achieved using 405 nm laser pulses at 225 mK. The quality factors of both the reference and optical stack samples are similar but the frequency noise is still a tenfold higher for the optical stack sample which degrades the energy-resolving power of the detector.

Funder

European Research Council

Centre National d’Etudes Spatiales

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3