The feasibility of designing a back propagation neural network to predict the levitation force of high-temperature superconducting magnetic levitation

Author:

Liu Xiaoning,Ke Zhihao,Chen Yining,Deng ZigangORCID

Abstract

Abstract The levitation force between the superconductor and the magnet is highly nonlinear and affected by the coupling of multiple factors, which brings many obstacles to research and application. In addition to experimental methods and finite element simulations, the booming artificial neural network (ANN) which is adept at continuous nonlinear fitting may provide another solution to predict the levitation force. And this topic has not been deeply investigated so far. Therefore, this study aims to apply the ANN to predict the levitation force, and a typical neural network applied with the back propagation (BP) is adopted. The data set with 2399 pieces of data considers nine input factors and one force output, which was experimentally obtained by several test devices. The pre-process of the data set contains cleaning, balancing, one-hot encoding (for the discrete classified variable), normalization (for the continuous variable) and randomization. A classical perception with three layers (input, hidden and output layer) is applied in this paper. And the gradient descent back propagation algorithm reduces the error by iteration. Through the assessment and evaluation of the network, a great prediction accuracy could achieve. The prediction results could well illustrate the features of force (nonlinear, hysteresis, external field dependence and type difference between the bulk and stack), which confirm the feasibility of using a BP neural network to predict the levitation force. Furthermore, the performance of the neural network is determined by the data set, especially the uniformity and balance among factors in the set. Moreover, the huge gap in the quantity of data between factors disturbs the network to make a comprehensive judgment, and in this situation, the binary one-hot encoding of the small quantity and discrete data factor is efficient, instead of the actual value of the factor, the one-hot encoded data only represent the category. Moreover, a label encoder method is adopted to distinguish the decent and ascend (decent = 1, ascent = 0) for the force hysteresis.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3