Secondary CLIQ, a robust, redundant, and cost-effective means of protecting high-field accelerator magnets

Author:

Mentink MORCID,Ravaioli EORCID

Abstract

Abstract Secondary CLIQ is a quench protection method for protecting high-field accelerator magnets that involves charged capacitors into secondary normal-conducting coils that are magnetically coupled to the superconducting coils. The resulting coupling losses quickly brings the magnet to normal state and safely discharges it. No direct electrical or thermal link is required between the primary and secondary coils, and robust insulation is placed in between them. The two secondary circuits per magnet are galvanically insulated from the primary circuit, so that the tens to hundreds of CLIQ units needed to protect an accelerator circuit are galvanically insulated from one-another and from the superconducting magnets. The two secondary circuits per magnet each feature a CLIQ unit, and each CLIQ unit discharge is sufficient to bring the magnet to normal state over the entire operational current range. The coil geometry is such that the CLIQ discharge does not raise the voltage over the half-turns of the superconducting coils. After the superconducting coils develop resistance, a significant fraction of the stored magnetic energy is inductively transferred to and dissipated in the secondary coils. The resulting favourable adiabatic hot-spot temperature and voltage-to-ground enables the magnet designer to reduce the copper content of the superconducting coils, and thus lower the overall cost of the magnet. Secondary CLIQ quench simulations were performed on a hypothetical 14 m variant of the HD2 Nb3Sn dipole with a bore field of 16 T. It is demonstrated that the Secondary CLIQ method protects the magnet over its entire operational current range even in the case where one of the two CLIQ units fails to discharge with an adiabatic hotspot temperature of 248 K and voltage-to-ground of 610 V under nominal protection conditions, and a worst-case adiabatic hot-spot temperature of 263 K and voltage-to-ground of 840 V under fault conditions.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Reference46 articles.

1. Quench heater studies for the LHC magnets LHC Project Report 485, presented at the;Rodriguez-Mateos,2001

2. Quench protection studies of the 11 T Nb3Sn dipole for the LHC upgrade;Izquierdo Bermudez;IEEE Trans. Appl. Supercond,2016

3. Overview of the quench heater performance for MQXF, the Nb3Sn low-β quadrupole for the high luminosity LHC;Izquierdo Bermudez;IEEE Trans. Appl. Supercond,2018

4. Conservative Quench Scenario Considerations in the T Main Circuit and Impact on Voltages to Ground;Mentink;CERN EDMS Nr,2018

5. Voltage Withstand Levels in QXF agnets;Mentink;CERN EDMS Nr,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3