Abstract
Abstract
Reducing the negative impact of magnetic vortex motion is a long-term challenge for superconducting applications. Here, we conduct an in-depth investigation on the response of NbN nanowires on applied magnetic fields with the transverse size down to 10 nm. It is found that the vortex-free state can sustain under field up to 9 T in the sample of this dimension, demonstrating a unique approach to reduce the negative effects of flux motion in applications. Such a conclusion is further confirmed by the vanished flux-low instability velocity. Moreover, the upper critical field of the NbN nanowires reveals clear anisotropic features, which can be interpreted based on the framework of the Ginzburg–Landau model. Our results provide important information for understanding the behavior of nanoscale superconducting materials under magnetic fields, which is significant for the application of superconducting micro/nano devices.
Funder
Key-Area Research and Development Program of Guangdong Province
Shanghai Technology Innovation Action Plan Integrated Circuit Technology Support Program
National Natural Science Foundation of China