Dynamics of magnetic flux propagation in bulk, single grain superconducting rings during pulsed field magnetisation

Author:

Beck MichaelORCID,Tsui Yee KinORCID,Shi Yun HuaORCID,Moseley DominicORCID,Dennis Anthony R,Cardwell David A,Durrell John HORCID,Ainslie Mark DORCID

Abstract

Abstract When used as trapped field magnets (TFMs), single grain, bulk high-temperature superconducting (HTS) rings are promising candidates for the generation of strong, uniform magnetic fields for nuclear magnetic resonance. The pulsed field magnetisation (PFM) technique provides a low cost, compact and portable method to magnetise these samples as TFMs; however it has proven difficult to achieve high trapped fields in HTS rings using PFM. To date, a record field of only 0.60 T has been achieved for rings magnetised by single-pulse PFM—compared with over 4 T for disc-shaped HTS—and the reasons for this discrepancy are poorly understood. In this work, we use the finite element method to model the propagation of magnetic flux into HTS rings under quasi-static zero field cooled magnetisation and PFM, and validate the results analytically and experimentally. Magnetic flux is found to penetrate finite HTS rings from both the inner and outer surfaces, inducing a negative field at the inner face of the ring. This field is reversed as the applied field increases past the point of full penetration, locally dissipating magnetic energy and heating the sample. HTS rings are therefore more susceptible to local instabilities that severely limit their ability to trap a useful magnetic field. Consequently, thermomagnetic stability of HTS rings during single-pulse PFM can only be ensured by taking careful consideration of reducing flux movement through the bulk around the point at which the field is reversed. This may require more advanced PFM techniques like waveform control or multi-pulse stepwise-cooling to reduce local heating and increase the trapped field.

Funder

Engineering and Physical Sciences Research Council

Early Career Fellowship

W.D. Armstrong

EPSRC

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3