Numerical simulation of mechanical behaviors and intergranular fracture of polycrystalline Nb3Sn and superconducting filaments

Author:

Ding HeORCID,De Marzi GianlucaORCID,Gao YuanwenORCID

Abstract

Abstract Given the importance of large-scale engineering applications of the superconducting compound Nb3Sn, both its use and performance under certain operating conditions have attracted the interest of applied superconductivity researchers and material scientists for several years now. Huge efforts are directed toward understanding the response to applied loads and predicting fracture damage within their internal microstructure; this is fundamental in the design of superconducting coils and magnets which must meet stringent requirements in terms of maximum thermal and electromagnetic loads. In this paper, the fracture behaviors in polycrystalline Nb3Sn and Nb3Sn filaments with composite structures are investigated using the micromechanical finite element (FE) models with Voronoi tessellation. First, the 2D and 3D Voronoi FE models of the polycrystalline Nb3Sn tensile tests are developed and validated to provide insight into the cracking behavior in the intergranular brittle fracture of polycrystalline Nb3Sn. A cohesive zone model is used to simulate crack propagation at the grain level model including grain boundary zones. It is found that the pre-existing cracks of polycrystals and martensitic phase transformation of grains significantly impact the fracture properties in polycrystalline Nb3Sn. Second, detailed FE models of powder-in-tube (PIT) and bronze route filaments with Voronoi structures for fracture analysis are then developed on the basis of experimental observations of sectional morphologies. The mechanism of crack initiation and propagation under tensile load have been investigated by analyzing the mechanical properties of each component and the characteristics of multi-scale composite structures of filaments. Furthermore, the damage situation is investigated in PIT filaments undergoing transverse compressive load. The proposed simulation method in this paper can be extended to the fracture and damage analysis of Nb3Sn superconducting wires with different layouts and fabrication processes.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3